
Eigenvalue correlations in non-Hermitean symplectic random matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 6631

(http://iopscience.iop.org/0305-4470/35/31/308)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/31
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 6631–6644 PII: S0305-4470(02)33707-7

Eigenvalue correlations in non-Hermitean symplectic
random matrices

Eugene Kanzieper

Hitachi Cambridge Laboratory, Madingley Road, Cambridge CB3 0HE, UK
and
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

E-mail: eugene@phy.cam.ac.uk and eugene.kanzieper@weizmann.ac.il

Received 12 February 2002, in final form 12 June 2002
Published 26 July 2002
Online at stacks.iop.org/JPhysA/35/6631

Abstract
A correlation function of complex eigenvalues of N×N random matrices drawn
from non-Hermitean random matrix ensembles of symplectic symmetry is given
in terms of a quaternion determinant. Spectral properties of Gaussian ensembles
are studied in detail in the regimes of weak and strong non-Hermiticity.

PACS numbers: 02.10.Yn, 02.50.−r

1. Introduction

Statistical ensembles of generic real, complex and quaternion matrices were first introduced in
the pioneering work by Ginibre (1965) who managed to derive the joint probability distribution
function (jpdf ) of N complex eigenvalues {z�} = {x� + iy�} of N × N complex (β = 2) and
quaternion (β = 4) non-Hermitean random matrices:

P
(2)
N (z1, . . . , zN ) = C2(N)

∏
k<�

|zk − z�|2
N∏

�=1

w2(z�, z̄�) (1)

P
(4)
N (z1, . . . , zN ) = C4(N)

∏
k<�

|zk − z�|2|zk − z̄�|2
N∏

�=1

|z� − z̄�|2w2(z�, z̄�) (2)

where Cβ(N) is a normalization constant, w2(z, z̄) is a weight function (see discussion below).
For real matrices (β = 1) with no further symmetries, the reader is referred to much later
papers by Lehmann and Sommers (1991), and also by Edelman (1997).

Although Ginibre’s derivation of equations (1) and (2) holds for random matrices with
Gaussian distributed entries, that is for

w2(z, z̄) = w2
0(z, z̄) = e−zz̄ (3)
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we will allow the weight w2(z, z̄) to be an arbitrary benign function of z and z̄ provided the
normalization Cβ(N) exists. It should be emphasized1 that such an innocent (at first glance)
extension is quite nontrivial as it raises the question about the existence of an underlying matrix
model whose eigenvalue representation would coincide with equations (1) and (2). Suppose
that the underlying non-Hermitean matrix commutes with its adjoint (such matrices are often
called normal matrices, see, e.g., Oas 1997), the interpretation of equations (1) and (2) as a
non-Gaussian jpdf is correct. Note, however, that such a commutativity constraint is not a
must. For example, an ensemble of weakly non-Hermitean matrices introduced by Fyodorov
et al (1997) is described by jpdf of forms (1) and (2), see Fyodorov et al (1998) and Hastings
(2000).

Of particular interest is the n-point correlation function which describes a probability
density to find n complex eigenvalues around each of the points z1, . . . , zn while positions of
the remaining levels are unobserved:

R(β)
n (z1, . . . , zn) = N!

(N − n)!

∫
· · ·

∫
d2Zn+1 . . . d2ZNP

(β)

N (z1, . . . , zN ). (4)

The integration measure d2Z� is d2Z� = dx� dy�. Quite often, one is also interested in a
thermodynamic limit

ρ(β)
n (z1, . . . , zn) = lim

N→∞
1

δ2n
N

R(β)
n

(
z1

δN

, . . . ,
zn

δN

)
(5)

which magnifies spectrum resolution on the appropriate energy scale δN while letting matrix
size N tend to infinity.

At β = 2, the n-point correlation function for non-Hermitean matrix model has also been
studied by Ginibre (1965). Adopting the method of orthogonal polynomials introduced in the
context of Hermitean random matrix theory by Mehta and Gaudin (1960), it is a straightforward
exercise to demonstrate that R(2)

n (z1, . . . , zn) admits the determinant representation

R(2)
n (z1, . . . , zn) = det

[
K

(2)

N (zk, z̄�)
]

k,�=1,...,n
.

The scalar kernel

K
(2)
N (z, z′) = w(z, z̄)w(z′, z̄′)

N−1∑
k=0

Pk(z)Pk(z
′)

is expressed in terms of polynomials Pk(z) orthonormal in the complex plane z = x + iy∫
d2Zw2(z, z̄)Pk(z)P�(z̄) = δk�

with respect to the measure w2(z, z̄) d2Z.
For instance, the density of states and the two-point correlation function equal

R
(2)

1 (z) = KN(z, z̄)

and

R
(2)
2 (z1, z2) = KN(z1, z̄1)KN(z2, z̄2) − |KN(z1, z̄2)|2

respectively.
Non-Hermitean random matrices at β = 4 have also received some attention in both

physical and mathematical literature especially following a recent burst of interest in spectral
properties of non-Hermitean random operators (see, e.g., Efetov 1997).
1 The referee is thanked for pointing this out.
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Mehta (1967) considered a non-Hermitean matrix model of symplectic symmetry for
Ginibre’s weight function w2

0(z, z̄) = exp(−zz̄), and established a quaternion determinant
structure of one- and two-point correlation functions. He also conjectured a similar structure
to hold for all n-point correlation functions. In Ginibre’s case, these appear in the revised 1991
edition of Mehta’s book.

Further progress has come with the development of field theoretic techniques. Kolesnikov
and Efetov (1997), driven by possible applications in quantum chromodynamics (Halasz et al
1997), have formulated a nonlinear supersymmetry σ -model for this class of random matrices,
and derived an expression for the eigenvalue density in a somewhat richer model (see
equation (21) below).

More recently, yet another field theory approach (also known as the replica method) was
outlined by Nishigaki and Kamenev (2002). There, the well-known Mehta expressions were
reproduced for one-point correlation function in the case of the very same Ginibre’s weight
function w2

0(z, z̄). Unfortunately, both the mentioned techniques run into obstacles when one
attempts to study higher-order correlation functions whilst replica σ -models seem to reliably
provide asymptotic expansions only.

A different route has been chosen by Hastings (2000) who suggested that there exists
a mapping of non-Hermitean random matrices of symplectic symmetry onto a fermion field
theory. Even though the method might have been potentially applicable to a study of n-point
correlation functions in the bulk of a complex spectrum, these have not explicitly been worked
out beyond the two-point correlation function.

Our paper reports on a comprehensive treatment of integrable structure of non-Hermitean
random matrix models at β = 4. It sets a transparent and coherent framework to study all
n-point correlation functions: while easily applied to reproduce the results of the
aforementioned studies and extend them to higher-order correlation functions in the spectrum
bulk, it may go much farther and serve as a proper starting point to explore eigenvalue
correlations near the spectrum edges and/or address the issue of universality (for a recent
review of the universality phenomenon in the context of Hermitean random matrix models
see, e.g., Kanzieper and Freilikher 1999).

The paper is organised as follows. Section 2 announces a most general form of n-point
correlation function whatever the weight function in equation (2) is. A proof is given in
section 3. A concept of skew orthogonal polynomials which are central to performing explicit
calculations is elaborated in detail in section 4. There, exact expressions for skew orthogonal
polynomials are given in terms of multi-fold integrals. For the Gaussian weight (equation (21)),
the polynomials are evaluated explicitly. In section 5, n-point correlation functions for the
Gaussian weight (equation (21)) are derived for finite N as well as in the large-N limit.
Section 6 contains concluding remarks and briefly mentions further possible applications of
the formalism developed.

2. Correlation function at β = 4 and eigenvalue depletion along the real axis

For a symplectic ensemble, the following representation holds for the n-point correlation
function:

R(4)
n (z1, . . . , zn) = Q det

[
K

(4)
N (zk, z�)

]
k,�=1,...,n

. (6)

Here Q det stands for a quaternion determinant (Dyson 1972). The 2 × 2 matrix kernel

K
(4)
N (z, z′) = (z̄ − z)1/2(z̄′ − z′)1/2w(z, z̄)w(z′, z̄′)

(
κN(z̄, z′) −κN(z̄, z̄′)
κN(z, z′) −κN(z, z̄′)

)
(7)
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where the ‘prekernel’ κN is

κN(z, z′) =
2N−1∑
k,�=0

pk(z)(M
−1)k�p�(z

′) (8)

and M−1 is an inverse to the real antisymmetric matrix M with the entries

Mk� =
∫

d2Z(z̄ − z)w2(z, z̄) [pk(z)p�(z̄) − p�(z)pk(z̄)]. (9)

The polynomials pk(z) are arbitrary provided the inverse M−1 exists. Since the matrix M
is antisymmetric, the formulae would be simplest had it contained N copies of the 2×2 matrix

iσy =
(

0 1
−1 0

)
along the main diagonal. This is achieved by letting pk(z) be skew-orthogonal polynomials
qk(z) in the complex domain:

〈q2k+1, q2�〉S = −〈q2�, q2k+1〉S = rkδk� (10)

〈q2k+1, q2�+1〉S = 〈q2k, q2�〉S = 0. (11)

The skew product 〈f, g〉S is defined as2

〈f, g〉S =
∫

d2Z(z̄ − z)w2(z, z̄) [f (z)g(z̄) − f (z̄)g(z)]. (12)

With this choice in mind, the prekernel κN further simplifies to

κN(z, z′) =
N−1∑
k=0

q2k+1(z)q2k(z
′) − q2k+1(z

′)q2k(z)

rk

. (13)

In particular, the density of states and the two-point correlation functions are expressed as

R
(4)

1 (z) = (z̄ − z)w2(z, z̄)κN(z, z̄) (14)

and

R
(4)
2 (z1, z2) = (z̄1 − z1)(z̄2 − z2)w

2(z1, z̄1)w
2(z2, z̄2)

× [
κN(z1, z̄1)κN(z2, z̄2) − |κN(z1, z2)|2 + |κN(z1, z̄2)|2

]
(15)

respectively.
Note that, in accordance with our solution (equations (6) and (7)), the n-point correlation

function universally vanishes along the real axes Im z� = 0,

R(4)
n (z1, . . . , zn) ∝

n∏
�=1

[Im z�]α α ≡ 2

whatever the weight function w2(z, z̄) is. It is this specific feature of spectral correlations in
symplectic ensembles of non-Hermitean random matrices that has been revealed, for n = 1,
in early numerical simulations due to Halasz et al (1997). Qualitatively, such a depletion of
complex eigenvalues along the real axis might have been anticipated after a brief inspection of
both the jpdf (equation (2)) and the definition of the n-point correlation function (equation (4)).

The results announced (equations (6)–(13)) will be derived in section 3. In section 4, we
study properties of skew-orthogonal polynomials which constitute a natural basis to perform
actual calculations of spectral fluctuations in β = 4 non-Hermitean random matrix ensembles.
The latter are addressed in section 5, where we consider an ensemble of N × N random
matrices associated with a Gaussian measure. Correlation functions in the regimes of strong
(Ginibre 1965) and weak (Fyodorov et al 1997) non-Hermiticities are explicitly given there
for finite N as well as in the limit of infinite matrices.
2 Note a difference from the skew orthogonality arising in the context of Hermitean random matrices (Mahoux
and Mehta 1991).
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3. Derivation

To derive a quaternion determinant representation of n-point correlation function, we will
follow an elegant idea of Tracy and Widom (1998). These authors have introduced generating
functional

G[f ] =
∫

· · ·
∫

d2Z1, . . . , d2ZNPN(z1, . . . , zN )

N∏
k=1

[1 + f (zk)]

such that the n-point correlation function Rn(z1, . . . , zn) defined by equation (4) can be
viewed as the coefficient of α1 . . . αn in the expansion of G[f ] for a particular choice
f (z) = ∑N

r=1 αrδ
2(z − zr). Assuming that G[f ] admits the representation

G[f ] =
√

det(I + KNf )

where KN denotes the operator with 2 × 2 (self-dual) matrix kernel KN(z, z′) and f denotes
multiplication by that function, Tracy and Widom (1998) have explicitly evaluated the
coefficient of α1, . . . , αn and found it to be equal to the quaternion determinant in the rhs
of equation (6).

Hence, in accordance with this statement (which we will name the Tracy–Widom
theorem), one has to seek a suitable representation for G[f ] with the jpdf given by equation (2).
This is easy. Due to the identity

∏
k<�

(xk − x�)

N∏
k,�=1

(yk − x�)
∏
k>�

(yk − y�) = det

[
xk−1

�

yk−1
�

]
k=1,...,2N

�=1,...,N

one notes that

∏
k<�

|zk − z�|2|zk − z̄�|2
N∏

�=1

(z̄� − z�) = det

[
zk−1
�

z̄k−1
�

]
k=1,...,2N

�=1,...,N

.

To derive the latter, we have put x� = z� and y� = z̄� in the former. With this result in mind,
the jpdf P

(4)

N can be cast into the form

P
(4)

N (z1, . . . , zN ) = C4(N)

N∏
�=1

(z� − z̄�)w
2(z�, z̄�) det

[
pk−1(z�)

pk−1(z̄�)

]
k=1,...,2N

�=1,...,N

.

Here, we have replaced the sequence of monomials
{
zk
�

}
by arbitrary monic polynomials

{pk(z�)} of degree k as this leaves the value of determinant intact. If the polynomials pk were
not monic, the normalization prefactor C4(N) would change.

This representation is fairly useful due to de Bruijn’s (1955) integration formula∫
· · ·

∫
dα(Z1) · · · dα(ZN) det

[
fk(z�)

gk(z�)

]
k=1,...,2N

�=1,...,N

= (2N)!Pf

[∫
dα(Z)[fk(z)g�(z) − f�(z)gk(z)]

]
k,�=1,...,2N
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in which dα(Z) is an integration measure and ‘Pf’ stands for Pfaffian. One derives the
following chain:

G2[f ] ∝ det

[∫
d2Z(z̄ − z)w2(z, z̄)[1 + f (z)][pk(z)p�(z̄) − p�(z)pk(z̄)]

]

∝ det

[
Mk� +

∫
d2Z(z̄ − z)w2(z, z̄)f (z)[pk(z)p�(z̄) − p�(z)pk(z̄)]

]
(16)

∝ det

[
δk� +

∫
d2Z(z̄ − z)w2(z, z̄)f (z)[πk(z)p�(z̄) − p�(z)πk(z̄)]

]
. (17)

Matrix M in equation (16) is defined by equation (9). To derive equation (17), we have
factored out M on the left. Note that equation (17) automatically bears a proper normalization
G2[0] ≡ 1. The polynomials πk are

πk(z) =
2N−1∑
�=0

(M−1)k�p�(z).

The matrix appearing under the sign of determinant in equation (17) can be represented
as I + AB with

A(�, z) = f (z)(z̄ − z)1/2w(z, z̄)(π�(z),−π�(z̄))

B(z, �) = (z̄ − z)1/2w(z, z̄)

(
p�(z̄)

p�(z)

)
.

As soon as the transposition does not affect the value of the determinant, one observes the
identity det(I + AB) = det(I + BA). In this case BA is the integral operator with matrix
kernel KN(z1, z2)f (z2) where

KN(z1, z2) = (z̄1 − z1)
1/2(z̄2 − z2)

1/2w(z1, z̄1)w(z2, z̄2)

×
(∑

� p�(z̄1)π�(z2) −∑
� p�(z̄1)π�(z̄2)∑

� p�(z1)π�(z2) −∑
� p�(z1)π�(z̄2)

)
.

Hence, we have proved that G2[f ] = det(I + KNf ). Since the 2 × 2 matrix KN is self-dual3,
equation (6) follows by virtue of the Tracy–Widom theorem. This completes our proof.

4. Skew-orthogonal polynomials

4.1. General weight w2(z, z̄)

We have seen in section 2 that skew-orthogonal polynomials defined by equations (10)–(12)
represent a natural basis in which calculations become simplest. These can explicitly be found

3 Indeed, since the quaternion κN is represented by 2 × 2 matrix

θ [κN ] =
(

κN(z̄1, z2) −κN(z̄1, z̄2)

κN(z1, z2) −κN(z1, z̄2)

)

the dual quaternion κ̃N is given by

θ [κ̃N ] =
(−κN(z1, z̄2) κN(z̄1, z̄2)

−κN(z1, z2) κN(z̄1, z2)

)
.

Self-duality is a consequence of the equality σyθ [κ̃T
N ] = θ [κN ]σy .
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for a general weight function w2(z, z̄) provided the integrals below make sense and, in a monic
normalization, are given by the following 2n-fold integrals:

q2n(z) ≡ 1

An

∫
· · ·

∫
d2Z1 · · · d2Zn

n∏
�=1

(z − z�)(z − z̄�)

×
∏
k<�

|zk − z�|2|zk − z̄�|2
n∏

�=1

|z� − z̄�|2w2(z�, z̄�), (18)

q2n+1(z) ≡ 1

An

∫
· · ·

∫
d2Z1 · · · d2Zn

n∏
�=1

(z − z�)(z − z̄�)

(
z +

n∑
k=1

(zk + z̄k) + cn

)

×
∏
k<�

|zk − z�|2|zk − z̄�|2
n∏

�=1

|z� − z̄�|2w2(z�, z̄�). (19)

Here cn is an arbitrary constant which we will set to zero, cn = 0, whilst

An =
∫

· · ·
∫

d2Z1 · · · d2Zn

∏
k<�

|zk − z�|2|zk − z̄�|2
n∏

�=1

|z� − z̄�|2w2(z�, z̄�). (20)

For similar representations of skew-orthogonal polynomials arisen in the context of Hermitean
random matrix theory see Eynard (2001).

To prove that equations (18) and (19) obey skew-orthogonality relations (equations (10)–
(12)), it is sufficient to show that (i) 〈q2n, z

m〉S = 0 and (ii) 〈q2n+1, z
m〉S = 0 for integer

0 � m � 2n − 1.
(i) Consider

〈q2n, z
m〉S ∝

∫
d2Z(z̄ − z)w2(z, z̄)

∫
· · ·

∫
d2 Z1 · · · d2Zn

×
∏
k<�

|zk − z�|2|zk − z̄�|2
n∏

�=1

|z� − z̄�|2w2(z�, z̄�)

×
[
z̄m

n∏
�=1

(z − z�)(z − z̄�) − zm

n∏
�=1

(z̄ − z�)(z̄ − z̄�)

]
.

As soon as

∏
k<�

|zk − z�|2|zk − z̄�|2
n∏

�=1

(z̄� − z�)

n∏
�=1

(z − z�)(z − z̄�)

= det




1 z1 · · · z2n−1
1 z2n

1

1 z̄1 · · · z̄2n−1
1 z̄2n

1
...

...
...

...

1 zn · · · z2n−1
n z2n

n

1 z̄n · · · z̄2n−1
n z̄2n

n

1 z · · · z2n−1 z2n
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we derive

〈q2n, z
m〉S ∝

∫
· · ·

∫
d2Z1 · · · d2Zn d2Zn+1

n+1∏
�=1

(z� − z̄�)w
2(z�, z̄�)

× det




1 z1 · · · z2n
1 0

1 z̄1 · · · z̄2n
1 0

...
...

...
...

1 zn · · · z2n
n 0

1 z̄n · · · z̄2n
n 0

1 zn+1 · · · z2n
n+1 zm

n+1

1 z̄n+1 · · · z̄2n
n+1 z̄m

n+1




where we have introduced zn+1 = z. Since a particular enumeration of z� (1 � � � n + 1) is
irrelevant, this reduces to

〈q2n, z
m〉S ∝

∫
· · ·

∫
d2Z1 · · · d2Zn d2Zn+1

n+1∏
�=1

(z� − z̄�)w
2(z�, z̄�)

× det




1 z1 · · · z2n
1 zm

1

1 z̄1 · · · z̄2n
1 z̄m

1
...

...
...

...

1 zn+1 · · · z2n
n+1 zm

n+1

1 z̄n+1 · · · z̄2n
n+1 z̄m

n+1


 .

The latter integrand obviously vanishes for 0 � m � 2n thus completing the proof of
equation (18).
(ii) Consider

〈q2n+1, z
m〉S ∝

∫
d2Z(z̄ − z)w2(z, z̄)

∫
· · ·

∫
d2Z1 · · · d2Zn

∏
k<�

|zk − z�|2|zk − z̄�|2

×
n∏

�=1

|z� − z̄�|2w2(z�, z̄�)

[
z̄m

(
z +

n∑
k=1

(zk + z̄k)

)
n∏

�=1

(z − z�)(z − z̄�)

− zm

(
z̄ +

n∑
k=1

(zk + z̄k)

)
n∏

�=1

(z̄ − z�)(z̄ − z̄�)

]
.

Invoking reasoning we have used in (i), this is further reduced to

〈q2n+1, z
m〉S ∝

∫
· · ·

∫
d2Z1 · · · d2Zn d2Zn+1

n+1∏
�=1

(z� − z̄�)w
2(z�, z̄�)

×


det




1 z1 · · · z2n
1 zm

1

1 z̄1 · · · z̄2n
1 z̄m

1
...

...
...

...

1 zn+1 · · · z2n
n+1 zm

n+1

1 z̄n+1 · · · z̄2n
n+1 z̄m

n+1




n+1∑
�=1

(z� + z̄�) − det




1 z1 · · · z2n
1 zm+1

1

1 z̄1 · · · z̄2n
1 z̄m+1

1
...

...
...

...

1 zn+1 · · · z2n
n+1 zm+1

n+1

1 z̄n+1 · · · z̄2n
n+1 z̄m+1

n+1





.

The latter trivially vanishes for 0 � m � 2n − 1. This completes our proof of equation (19).
One may also verify that the normalization rn in equations (10) and (11) is related to An

(equation (20)) as rn = An+1/An.
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4.2. Gaussian weight

While the representations obtained above are fairly useful to study, e.g. asymptotic properties
of general skew-orthogonal polynomials and address the issue of universality of eigenvalue
correlations in non-Hermitean random matrix theory at β = 4, there is no need to resort to
them for a simple Gaussian weight4

w2
G(z, z̄) = exp

[
− N

1 − τ 2

(
zz̄ − τ

2
(z2 + z̄2)

)]
(21)

that we will be interested in following.
In this case, skew-orthogonal Hermite polynomials are simple:

q2k+1(z) =
( τ

2N

)k+1/2
H2k+1

(
z

√
N

2τ

)
, (22)

q2k(z) =
(

2

N

)k

k!
k∑

�=0

(τ

2

)� 1

(2�)!!
H2�

(
z

√
N

2τ

)
. (23)

Here Hk(z) are ‘conventional’ Hermite polynomials

Hk(z) = 2k

√
π

∫ +∞

−∞
dt e−t2

(z + it)k

orthogonal in the complex plane z with respect to the measure w2(z, z̄) d2Z (Di Francesco et al
1994): ∫

d2Zw2
G(z, z̄)Hk

(
z

√
N

2τ

)
H�

(
z̄

√
N

2τ

)
= π(1 − τ 2)1/2

N

2kk!

τ k
δk�.

Indeed, straightforward calculation in equations (10) and (11) confirms that skew-orthogonality
is met with

rk = 2π(1 − τ )3/2(1 + τ )1/2 (2k + 1)!

N2k+2
. (24)

Yet another, integral representation for q2k(z) holds which is more suitable for our
purposes. To derive it we introduce the function

Fk(z) =
k∑

�=0

(τ

2

)� 1

(2�)!!
H2�(z) (25)

and note that it satisfies the differential equation

(1 + τ )
∂Fk

∂z
− 2τzFk(z) = −τ

(τ

2

)k 1

(2k)!!
H2k+1(z).

The latter is readily verified by using the identity H ′
�(z) = 2�H�−1(z). Integrating out, we

infer

Fk(z) = exp

(
τz2

1 + τ

)[
σk − τ

1 + τ

(τ

2

)k 1

(2k)!!

∫ z

0
dz′ exp

(
− τz′2

1 + τ

)
H2k+1(z

′)
]

4 This weight may be thought of as originating from the matrix model H = H1 + ivH2, with each of
Hσ(σ = 1, 2) being drawn from statistically independent Gaussian symplectic ensembles of Hermitean random
matrices P [Hσ ] ∝ exp{−[N/(1+τ 2)] Tr (H 2

σ )}; the parameter v2 = (1−τ )/(1+τ ) (see, e.g., Fyodorov et al (1997)).
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where

σk =
k∑

�=0

(τ

2

)� H2�(0)

(2�)!!
H2�(0) = (−1)�

(2�)!

�!
.

Summation over � can be performed explicitly resulting in

σk = 1√
1 + τ

[
1 − τ k+1

22k+2k!
H2k+2(0)

∫ 1

0

dξξk

√
1 + τξ

]
.

Taken together with equations (23) and (25), this brings us to an exact integral representation
for the even-order skew-orthogonal polynomials:

q2k(z) =
(

2

N

)k
k!√
1 + τ

exp

(
Nz2

2(1 + τ )

){[
1 − τ k+1

22k+2k!
H2k+2(0)

∫ 1

0

dξξk

√
1 + τξ

]

− τ√
1 + τ

(τ

2

)k 1

(2k)!!

√
N

2τ

∫ z

0
dw exp

(
− Nw2

2(1 + τ )

)
H2k+1

(
w

√
N

2τ

)}
.

(26)

5. Eigenvalue correlations in β = 4 Gaussian ensembles

In this section, we apply our findings to explicitly work out the n-point correlation function for
β = 4 non-Hermitean random matrix ensemble associated with the Gaussian weight w2

G(z, z̄)

(equation (21)). By letting the parameter τ tend to zero, a strongly non-Hermitean Ginibre’s
ensemble is recovered. Scaling τ with matrix size N as τ = 1 − α2/2N where α ∼ O(1) one
accesses a regime of weak non-Hermiticity (Fyodorov et al 1997a, 1997b) which is known
to coincide with a zero-dimensional sector of a supersymmetry theory of disordered systems
with a direction (Efetov 1997).

For other papers addressing non-Hermitean Gaussian ensembles of symplectic symmetry
by field-theoretic (σ -model) techniques see, e.g., a supersymmetry treatment by Kolesnikov
and Efetov (1999) and a replica approach by Nishigaki and Kamenev (2002). Unfotunately,
both techniques run into obstacles when one attempts to study the n-point correlation function
whilst replica σ -models seem to reliably provide asymptotic expansions only (Verbaarschot
and Zirnbauer 1985, Kanzieper 2001).

5.1. Finite-N solution

In accordance with equation (6), the prekernel (equation (7)) is the only entity needed to
evaluate the n-point correlation function. Equations (13), (22), (23) and (24) furnish the
desired solution

κN(z, z′) = 1

2π

(
1

1 + τ

)1/2 (
N

1 − τ

)3/2
[

N−1∑
k=0

(τ

2

)k+1/2 1

(2k + 1)!!

× H2k+1

(
z

√
N

2τ

)
k∑

�=0

(τ

2

)� 1

(2�)!!
H2�

(
z′
√

N

2τ

)
− (z ↔ z′)

]
. (27)

It holds for arbitrary finite N.

5.2. Limit of infinite matrices: N → ∞
The large-N limit is different for weakly and strongly non-Hermitean regimes.
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5.2.1. Strong non-Hermiticity. As τ → 0, the prekernel simplifies to

κN(z, z′) = N3/2

2π

N−1∑
k=0

[
(z

√
N)2k+1

(2k + 1)!!

k∑
�=0

(z′√N)2�

(2�)!!
− (z ↔ z′)

]
. (28)

We are interested in a thermodynamic limit N → ∞ with a blown-up energy resolution
z �→ z/δN where δN = (N/2π)1/2. To this end we have to evaluate

lim
N→∞

1

δ3
N

κN

(
z

δN

,
z′

δN

)
=

√
2π

∞∑
k=0

k∑
�=0

[
(z

√
2π)2k+1

(2k + 1)!!

(z′√2π)2�

(2�)!!
− (z ↔ z′)

]
. (29)

An extra power of δN in the denominator of the lhs is brought about by a prefactor
(z̄ − z)1/2(z̄′ − z′)1/2 in equation (7).

Double summation in equation (29) can be performed explicitly. Denoting

σ(z, z′) =
∞∑

k=0

k∑
�=0

[
z2k+1

(2k + 1)!!

(z′)2�

(2�)!!
− (z ↔ z′)

]

we observe that
∂σ

∂z
= zσ + ezz′ ∂σ

∂z′ = z′σ − ezz′
.

This suggests that we look for σ(z, z′) in the form

σ(z, z′) = e
1
2 (z2+z′2)(z, z′).

As soon as
∂

∂z
= e− 1

2 (z−z′)2 ∂

∂z′ = − e− 1
2 (z−z′)2

we obtain

(z, z′) =
∫ z−z′

0
dt e−t2/2 =

√
π

2
erf

(
z − z′
√

2

)
.

This results in

lim
N→∞

1

δ3
N

κN

(
z

δN

,
z′

δN

)
= π exp[π(z2 + z′2)] erf[

√
π(z − z′)]. (30)

The latter is sufficient to evaluate all n-point correlation functions by means of equations (6)
and (7). For instance, the scaled density of states (equations (5) and (14)) reads

ρ
(4)

1 (z) = (z̄ − z) lim
N→∞

1

δ3
N

w2

(
z

δN

,
z̄

δN

)
κN

(
z

δN

,
z̄

δN

)

= 8πY 2 exp (−4πY 2)

∫ 1

0
dλ exp (4πY 2λ2), (31)

Y = Im z. A particular rescaling used in equation (29) has been chosen in such a way that the
scaled level density ρ

(4)
1 (z) approaches unity at infinity, |Y | → ∞.

5.2.2. Weak non-Hermiticity. The regime of weak non-Hermiticity is of particular interest
due to its close relation to Efetov’s model of disordered systems with a direction. We reiterate
that a degree of (weak) non-Hermiticity is governed by a parameter τ which scales with the
matrix size N as τ = 1 − α2/2N,α ∼ O(1).
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The large-N limit of the sum equation (13) (or equation (27)) is dominated by contributions
of terms with k such that k/N ∼ O(1). One therefore needs the asymptotics of skew orthogonal
polynomials qk(z) at large indices k.

Asymptotics for odd-order skew-orthogonal polynomials q2k+1 are those of Hermite
polynomials H2k+1 (equation (22)). Utilizing the result from standard reference book by
Szegö (1939)

H2k+1

(
z

2
√

k

)
� 22k+1(−1)kk!√

πk
sin z

we conclude that

q2k+1(z) � 22k+1(−1)kk!

π1/2

( τ

2N

)k+1/2
sin

(
z

√
2kN

τ

)
. (32)

Here k/N ∼ O(1) and zN ∼ O(1).
Asymptotics for even-order skew-orthogonal polynomials q2k can be read out from

equation (26). Since∫ 1

0

dξξk

√
1 + τξ

� 1

k
√

1 + τ
k  1

we derive

q2k(z) �
(

2

N

)k
k!√
1 + τ

[
1 − τ√

1 + τ

(τ

2

)k+1 1

(2k + 2)!!
H2k+2

(
z

√
N

2τ

)]
. (33)

Applying further the asymptotic formula (Szegö 1939)

H2k

(
z

2
√

k

)
� 22k(−1)kk!√

πk
cos z

we deduce

q2k(z) �
(

2

N

)k
k!√
1 + τ

[
1 +

(−1)kτ k+1

√
1 + τ

√
πk

cos

(
z

√
2kN

τ

)]
. (34)

Equations (32) and (34) for skew-orthogonal Hermite polynomials at k  1 now make it
possible to evaluate the large-N prekernel. Substituting the two equations into equation (13),
and replacing the sum over k by an integral we come up with

lim
N→∞

1

δ3
N

κN

(
z

δN

,
z′

δN

)
= −π3/2

4α3

∫ 1

0

dλ

λ
e−α2λ2

sin[π(z − z′)λ]. (35)

When taking the limit N → ∞, the scale δN has been set to δN = N
√

2/π .
In accordance with equation (6), knowledge of the scaled prekernel equation (35) is self-

sufficient to have evaluated all n-point correlation functions. For instance, the density of states
reads (equations (5) and (14))

ρ
(4)
1 (z) = π3/2

2α3
Y exp (−π2Y 2/α2)

∫ 1

0

dλ

λ
exp (−α2λ2) sinh [2πYλ]. (36)
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6. Conclusions

A problem of eigenvalue correlations in symplectic ensembles of non-Hermitean random
matrices has been exactly solved by the method of orthogonal polynomials. In close analogy
with β = 4 Hermitean matrix ensembles, the n-point correlation function is given by a
quaternion determinant (equation (6)) of an n × n matrix whose entries are quaternions with
an image given by 2 × 2 matrices in the form of equation (7). To evaluate the latter it is
convenient (but not obligatory) to introduce a set of polynomials which are skew-orthogonal
in the complex plane (equations (10) and (11)). The skew-orthogonality set by equation (12)
represents a natural basis in which calculational technology is most economic.

In Gaussian random matrix ensembles, the eigenvalue correlations are described by the
prekernel equation (27) which further simplifies down to equations (30) and (35) for strong
and weak non-Hermiticity, respectively. These results do not apply very close to the spectrum
edges, which may also be studied within the current framework.

Remarkably, at β = 4, all n-point spectral correlation functions exhibit a peculiar
depletion of eigenvalues along the real axis Im z� = 0, 1 � � � n, where correlations vanish
for both arbitrary matrix size N and a probability measure w2(z, z̄). As for the remaining
nontrivial functional dependence, we expect it to be universal as well once a thermodynamic
limit is taken. Equations (18) and (19) will obviously serve as a proper starting point to address
the universality issue in either the spectrum bulk or near the complex edges of the eigenvalue
support.
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